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Optimal Pricing and Advertisin& Policies

for New Product Oligopoly Models

by

Gerald L. Thompson and Jinn-Tsair Teng

ABSTRACT

In this paper our previous work on monopoly and oligopoly new product

models is extended by the addition of pricing as well as advertising control

variables. These models contain Bass's demand growth model, and the Vidale-

Wolfe and Ozga advertising models, as well as the production learning curve

model and an exponential demand function.

The problem of characterizing an optimal pricing and advertising policy

over time is an important question in the field of marketing as well as in

the areas of business policy and competitive economics. These questions are

particularly important during the introductory period of a new product, when

the effects of the learning curve phenomenon and market saturation are most

pronounced.

We isider first the monopoly case with linear advertising cost, ex-

ponential demand, and three different pricing rules: the optimal variable

pricing, the instantaneous mcrginal pricing, and the optimal constant pricing

rules. Several theoretical results are established for these rules including

the facts that the instantaneous marginal pricing rule is a myopic version of

the optimal pricing rule and the optimal constant pricing rule is a weighted

average over time of the instantaneous marginal pricing rule. Another sur-

prising result i that, after the market is at least half saturated, a pulse of



advertising must be preceded by a significant drop in price. Numerical

solutions of a number of examples are discussed.

Oligopolistic models are analyzed as non-zero-sum differential games

in the rest of the paper. The state and adjoint equations are easy to write

down, but impossible to solve in closed form. Hence we describe how to

reformulate these models as discrete differential games, and give a numerical

algorithm for finding open loop Nash solutions. The latter was used to solve

three triopoly models. In each case it was found that optimal prices and ad-

vertising rates start high and steadily decline.
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Optimal Pricing and Advertising Policies

for New Product Oligopoly Models

by

Gerald L. Thompson and Jinn-Tsair Teng

1. INTRODUCTION

In a previous paper [201 we considered monopoly and oligopoly ad-

vertising models for a new product during its introductory period when the

production learning curve phenomena is most pronounced. The models given

in that paper were based on Bass's classic demand growth model [1, 3], the

Vidale-Wolfe [22] and Ozga [15] advertising models, and the production

learning curve model. [9, 21]. Optimal advertising policies were found

for the monopoly models by applying Green's theorem. However, we found that

the oligopoly (specifically triopoly) non-zero-sum differential game models we

considered did not have closed form solutions so that we were only able to

obtain computer generated and graphed'solutions for specific numerical in-

stances of the models. Nevertheless these solutions were intuitively reason-

able and informative.

In the present paper we extend the results of our previous paper to

models in which price as well as advertising is a control variable. In

Section 2 we discuss the monopoly case in which we add an exponential demand

function to the state equation in a manner similar to that proposed by

Robinson and Lakhani in [15]. With that model we discuss three different

pricing rules, the optimal variable pricing rule, the instantaneous marginal

pricing rule, and the optimal constant pricing rule. The reason for discussing

these three pricing rules is to determine which pricing rule is the best for dif-

ferent objective functions. For instance, the optimal variable pricing rule is
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the best policy for maximizing net profit without consideration of the transaction

costs of changing prices; the instantaneous marginal pricing rule is the best for

maximizing the ending cumulative market share; and the optimal constant pricing

rule gives the largest profit if we consider the transaction costs of changing

prices, provided the price elasticity of demand is sufficient large.

In Theorem 1 of Section 2.1 we prove several results that hold for all

three pricing rules. First, that optimal advertising is zero when the market is

almost saturated. Second, a higher value of the production learning coefficient

or a lower value of the demand coefficient causes the optimal advertising rate

to be higher. Simple economic interpretations are as follows: (1) A higher

value of the production learning coefficient implies a lower'value of production

cost. Hence, in this case we can afford to do more advertising and increase the

profit. (2) A lower value of the demand coefficient implies that demand is sensitive

to the advertising rate. In this case, it pays to do more advertising. Third,

that high values of the production learning coefficient or of the demand co-

efficient cause the optimal. price to be low. Simple economic interpretations are

as follows: (1) A hitgher value of the production learning coefficient implies a

lower value of production cost. In this case, we can lower the price to increase

the sales volume and profit. (2) A higher value of the demand coefficient implier

a higher value of the price elasticity of demand. In this case, we have to lower

the price in order to increase the sales volume and profit. Finally, it is shown

that after the market is more than half saturated, no advertising will be done

unless preceeded (and usually accompanied) by a significant price drop.

in Section 2.2 we show that the instantaueous marginal pricing rule is

"1myopic" in that it differs from the optimal variable pricing rule by the

factor -X, where A is the adjoint variable. The adjoint variable satisfies
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a differential equation, and its value depends on future demands and advertising

expenditures. Theorem 2 characterizes the optimal advertising policy for the

instantaneous marginal pricing case.

In Section 2.3 we obtain the optimal constant price rule and observe

that it can be interpreted as the weighted mean value of the instantaneous

marginal pricing rule. We also characterize in Theorem 3 the optimal adver-

tising policy in a way that is similar to the marginal pricing case. Theorem 4

asserts that for the optimal constant pricing rule, the optimal advertising

trajectory will have at most one interval, or pulse, of advertising. This same

result still holds under slightly modified assumptions for the marginal pricing

rule. However, it definitely is false for the optimal variable pricing rule.

A counter-example is presented in the next section.

In Section 2.4 we discuss numerical solutions of 10 different examples

with randomly generated parameters. We present graphical solutions for

Example 2, which has the "two pulse" advertising solution alluded to earlier.

In all of these 10 examples, the optimal selling price started high and

steadily decreased with time. Such behavior is in accordance with observed

experience with new product introductions [8]. However, we also were able to

construct an example for which the optimal selling price increased to a peak

N and then decreased.

In the rest of the paper we discuss ollgopolistic versions of price ad-

vertising models in which the advertising costs are quadratic and the price

is assumed to be determined by the dominant firm. The state equations are

straight forward extensions of the monopoly case. However, the adjoint equa-

tions and optimal advertising and pricing policies are so complicated that it

is impossible to find closed form solutions for the solutions. Hence ye were
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forced to reformulate the problem as a discrete non-zero-sum differential game

model, solve it and plot the solution with the aid of a computer. In Section 3.1

we describe the numerical algorithm for finding open loop Nash solutions to the

model, and in Section 3.2 we discuss the numerical solutions of three triopoly

examples. In all of these examples the optimal price steadily declined. It

was also true for these examples that the optimal advertising starts high and

steadily decreases with time.

2. MONOPOLY MODELS

For many marketing situations, advertising is the most important strategic

-element in determining the market share achieved by a firm. For most consumer

products during their introductory phase there frequently is little change over

time in the form of the product, the channels of its distribution, etc. Price

is another important element in a marketing strategy which influences both

the demand for and the profit obtained from a product. Here we shall consider

demand growth models in which both advertising and pricing are control. variables

which can determine profits and market share.

For simplicity, economists generally assume that the demand of a product

is a linear, a power, or an exponential function of the price of the product.

In this section, we assume the demand is an exponential function of the price

since there is little significant difference in results obtained from using

any of these assumptions. We shall explore the optimal advertising monopoly

models under optimal variable, instantaneous marginal, and optimal constant

pricing policies and compare their performance with several different parameter

settings.



To define the monopoly models we introduce the following notation:

T - terminal time

p - discount rate

x(t) - cumulative market share at time t; we assume

x(t) e (0,1] and x(O) - x0

c(t) - c 0 (X 0 /x(t))f

- learning curve production cost at time t; c0

x0 and f (the learning coefficient) are constants;

we assume c(t) > 0, x0 > 0, c(O) - co > 0, and 0 < f < 1.

u(t) advertising rate at time t; we assume u(t) E [0,U],

where U is a positive constant which is the maximum permissible

advertising rate. (U is determined by the advertising budget,

media limitations. etc.)

p(t) = prices at time t

au(t) + 8 linear advertising cost; we assume a and B are constants,

and a > 0, 8 > 0. The number 6 represents the fixed costs

such as, listing the product in the catalog, registering a new

brand name, etc.

'4 A(t) - the adJoint variable.

As in [20], we assume that the marginal sales volume, x = dx/dt,

is proportional to the advertising rate as follows:

K (Yl- 2u)(1-x) + (Y3 + y4u)(l-x)x , (1)

Advertising Advertising

affects affects
innovators imitators



-6-

rewriting, we can give another interpretation:

~ (l-x) (Y1 + y2u + y3x + y4ux) (1')

Satura- Main Inter-
tion effects action
effect effect

where YI' Y2 v Y3 and y4 are nonnegative constants. As noted in [20], the

right hand side of (1) is a combination of Bass's demand growth model (in

which y 2 - y4 ' 0), and the Ozga (15] (in which Y1  Y2 = 3  0) and Vidale-

Wolfe [221 (in which Y = Y2 = Y4 = 0) advertising models. Horsky and Simon

have formulated a similar model using the natural logarithm function for adver-

tising effect [10]. Following Robinson and Lakhani [16] and Dolan and Jenland [7],

We assume that the demand is proportional to an exponential function of the price,

i.e.,

x "- e - g p  (2)

where the demand coefficient g is a given positive constant. Combining these

equations (1) and (2), we obtain the state equation of a monopolistic adver-

tising and pricing model as follows:

' - [(y 1 + y2u)(
l-x) + (Y3 + y4u) (l-x)xle-gP, x(0) x0 . (3)

Subject to (3), the monopolist wants to maximize his profit. Mathe-

matically his problem is equivalent to the following optimal control problem:
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T
maximize {J f e [(p-c)x - (au + B)]dt} (4)

0<u .U_; p >0 0

subject to (3), and the definition c(t) - c0 (xo/x(t))f

Note that: (1) Horsky and Simon (10], Ozga [15], and Vidale and Wolfe[22]

treated advertising as the only control variable. Bass and Bultez (3], Dolan

and Jeuland (7], and Robinson and Lakhani [16] considered price as the only control

variable. In this paper, we discuss a model in which both pricing and advertis-

ing are control variables. Kotowitz and Mathewson (12] have a slightly different

monopoly model which does not consider price and advertising simultaneously

and does not have a learning curve production function. (2) Since p - +

implies i - 0 in (2) and J - 0 in (4) and p < 0 implies J < 0, we know

that the constraint p > 0 in (4) is redundant and p = 0 cannot occur in any

optimal solution of the model.

2.1 Optimal Variable Pricing Rule

To apply the maximum principle, we formulate the current-value Hamiltonian

[13, 191 using the adjoint variable as follows:

H- (p-c) - (au + 0) + Xi

- [(p-c+X)(y 2+Y4 x) (L-x)e - u+ (p-C+X)(yl+3x)e - g p - 8 . (5)

The current-value Hamiltonian is linear in u so that the optimal control rule

for u is bang-bang, that is,

0 if D < 0

u =Iundefined if D - 0 (6)

U if D > 0

4



where

D (p-c+X) (y 2+y 4 x) (l-x) -ce
gP  (7)

is the advertising switching function.

To find the optimal control rule for the price p we maximize H ty

differentiating it with respect to p and set the result to zero which gives

the optimal variable price rule:

* 1

p -c + -- X. (8)g

The current-value adjoint variable \ satisfies the following dif-

ferential equation:

X = P - = p - [(Y3 +Y4 u)(l- 2x) - (y 1+Y2 u)]()e -  (9)
g

together with its transversality condition X(T) = 0. An economic interpreta-

tion of A can be found in (19]. Briefly, the value of A(t) at time t

evaluates the future effects on profits of making a small change of x(t) at

time t. Its role in optimal control theory is similar to the role of dual

variables in linear programming. The sign of and values of A as well as the

values of the optimal variable price rule p are impossible to predict. How-

ever, from our computational experience, we found that A was always negative

when g was sufficiently small. In the derivation of (9) we used (8). Equation

(8) can also be used to rewrite (7) as

D '(Y2 2 X) (l-x) - (10)

which is the simplified form of the switching function.

| - I
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Equation (6), (8) and (10) imply the following basic results (which

will also hold true for the marginal or optimal constant pricing rules to be

discussed later.)

Theorem 1. (a) When the market is almost saturated the optimal ad-

vertising rate must be zero, i.e.,

u 0 as x - . (11)

(b) A higher value of the learning coefficient f or a lower value

of the demand coefficient g causes the optimal advertising to be higher;

i.e.

u t when ft or g+ . (12)

(c) A higher value of the learning coefficient f or cf the demand

coefficient g causes the optimal price to be lower; i.e.,

p, when f+ or g+ (13)

(d) If x > xD  
- then a necessary condition that the optimal

2 2y4

policy should change from no advertising to positive advertising is that there

should first be a price drop.

Proof. The proof of (a) and (b) is trivial by looking at (8) and (10);

and the proof of (c) follows quickly from (8).

To prove (d) we note from (10) that the switching function D is the

difference between the function h(x) = 1(Y2 + y4x)(l-x) and aegp  It is

easy to show that h is a concave function with its maximum value at the
D  1 Y2 1argument x y - - -. Hence h is strictly decreasing for x > x

2 4 *

Therefore if x > xD and h(x) < aeg p so that from (6) advertising is not
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optimal, the only way the reverse inequality can hold which would make ad-

vertising optimal, is for p to decrease faster than h(x) decreases over

time. That is, a price drop must precede an advertising pulse.

Note that xD  is non positive when y2 1 Y4, i.e., when the advertising

coefficient for the innovators is greater than the advertising coefficient for

the imitators. In this case price drops are always needed in order to change

advertising rates. In the other case, when Y2 < Y4, that is when advertising

has more effect on imitators than it has on innovators, price drops are not needed

as frequently.

In the later numerical examples we will see examples of the two results

stated in Theorem l(a) and (d).

Because equations (3), (6), (8), (9), and (10) form a complicated two

point boundary value problem, it is impossible to find a closed form solution

for x when the optimal variable pricing rule is used. However, we can reformu-

late the problem as a discrete control problem, let a computer solve it and

plot the resulting solutions. A simple algorithm can easily be devised to

solve this discrete problem, but, because it is similar to the algorithm used

to solve the triopoly problem presented in Section 3, we do not give details

here.

a 2.2 Instantaneous Marginal Pricing Rule

Suppose we keep the optimal advertising rule (6), but change the price

rule from (8) to the instantaneous marginal pricing rule,

Instantaneous Marginal Revenue - Instantaneous Marginal Cost

or

a * a

iRolpl]i" - -c"]



then after differentiation and making some algebraic manipulations we have

p + c + 1 (14)

g
*

which is similar to the optimal variable pricing rule, p given in (8)

except for the term -X.

Note that in this case, the prices always decline as the production cost

decreases since g is a constant. This is sometimes called "pricing along

the learning curve," see [2,8].

It is extremely difficult to find a closed form solution for the optimal

advertising rule when the marginal price rule (14) is used in (3) and (4) by

applying the maximum principle. However, since u appears linearly in both

the state and the objective functions we can apply Green's theorem as we did

in (14]. From the state equation (3) we obtain the formal relation

egPdx - (y1+y3x) (l-x)dtudt - (7y2+y4x) (l-x) "(15)

Substituting this into (4) we can rewrite the objective function as a line

integral along any smooth curve r in the (t,x) space as follows

Jr f (Pdx + Qdt) (16)jrI rr
1 r1

where the functions P and Q are given by

- - e9 1 (17

S(y2+____ (l-x) e (17)

Q (Y,"1 3x)a (18)Y '2+y4x

HE=
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Let r be a simple closed curve which bounds a region R. Applying

Green's theorem we obtain

J, " ff {2'P dx --22xt

- ff e-I(x)dtdx (19)
R

where r agp 1 (Y2 Y3-Y1Y4)
I(X) p + e 2 (20)

g (y 2+ 4 x) (l-x) X)

and p is given by (14).

Lemma 1. Let rI  and r2  be the lower and upper feasible arcs of a

simple closed curve r = r1 -r2, and let R be the region enclosed by r.

If l(x) > 0 in R then the lower arc rI  is more profitable than the

t upper arc r2" Similarly if (1(x) < 0 in R then r2  is more profitable than rI.

Proof. Since J r Jl - 3 r the result follows easily from (19). For

analogous arguments see [14, 191.

Lemma 1 and (14) now imply the following closed form solution for the

optimal advertising.

Theorem 2. If the firm adopts the marginal pricing rule (14), then the

optimal advertising control is

10 if I(x) > 0

u - undefined if l(x) - 0 (21)

1- U if I(x) < 0

where. I(x) - + [- 1 + (x/ f) a (2Y3-Y4)

( (2+74x) (l-x) - 2+74X)2
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Corollary 1. (a) u ,0 as x - 1.
,

(b) u + when ft or g+.

Proof. Since I(x) > 0 as x - 1, and I(x)+ when ft or g+

the results follow immediately from (21).

Note that Corollary l(b) means that products which can be made more

efficiently or which have higher consumer appeal can support a higher level of

advertising; this is an intuitively appealing result.

2.3 Optimal Constant Pricing Rule

If the firm wants to maintain its price constant over a given time-

horizon, it would choose an optimal constant price, p, such that the follow-

ing conditions are satisfied:

2

7-0 and < 0 , (22)

where J is given as in (4). After carrying out the differentiations and

making some algebraic manipulations, we have the unique optimal constant price

fT 
T

p f e-ot(c +  id/ T e-Ptidt (23)0 g) -- 0

which can be interpreted as the weighted mean value of the marginal pricing

rule (14).

Similarly, we can apply Green's theorem as was done in 2.2 and get the

following closed form solution for the optimal advertising given any constant

price rule.
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Theorem 3. If the firm maintains its price constant over T horizon

time, then its optimal advertising control is

0 if K(x) > 0

u undefined if K(x) - 0 (24)

U if K(x) < 0

where

f e9P c(,y2 y3 -y 1 y4 )
K(x) = p[- p + e 2 - (25)S 4  ( 2+Y4x)

Corollary 2. (a) u 0 as x l 1.

(b) u + when ft or g+.

By testing the limits of K(x) and by calculating its second derivative

we can easily establish the following results.

Lemma 2. (a) if co, x0, f, and y2 + Y4 are positive then

K(x)- as x - 0 or 1.

(b) If Y2 y3 Y4 - 0 or y2Y3 <Yly4  then K"(x) > 0 so that K(x)

is a convex function of x.

The proof of Lemma 2(a) is obtained by taking the limit of the expression

in (25). The proof of Lemma 2(b) is obtained by considering the various cases

in which the hypotheses are true. Details are omitted.

Note that the hypotheses of Lemma 2(b) are true for both the Vidale-

Wolfe [22] and the Ozga [15J advertising models. In fact, if p is sufficiently

large then K(x) is convex even though the hypotheses of Lemma 2(b) do not hold.

Assuming the truth of the hypotheses of Lemma 2(b), it follows that there

is exactly one argument x in the open interval (0,1) which gives the global

minimum of K(x). If K6c) < 0 then there exist exactly two arguments xl and

x2 such that
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K(x)K(x2 ) 0 and 0 < x < < x2 <i (26)

Because K is a convex function it is easy to find x1  and x2 by using

Newton's or some other search method.

Lemma 2 and Theorem 3 now imply the following theorem.

Theorem 4. If the assumptions of Lemna 2 hold then there are only two

different optimal advertising strategies:

(a) If K(;) > 0 then u 0 is the optimal control. (27)

(b) If K(i) < 0 then the optimal advertising control is

(0 if 0 <x < x, or x <x l

u undefined if x x1  or x2  (28)

U if xI < X < X 2

This Theorem tells us that there are only three possible different kinds

of optimal advertising policies as follows: (A) No advertising at all over the

whole time horizon; (B) Advertising during an initial time, then no advertising

when the market becomes saturated; and (C) No advertising, then advertising

finally no advertising again.

Theorem 4 is still true for the marginal pricing rule if we make some

sltght modifications of the assumptions of Lemma 2. But Theorem 4 is not true

for the optimal variable pricing rule in (8) in general. For a counter example

see Figure 2 in Section 2.4.

2.4 Comparisons among Optimal Variable, Optimal Constant Price,_and Instantaneous

Marginal Price Rules

The definition of a monopoly model requires the setting of 13 parameters

(y1 ,Y2,Y3,Y4 ,gfOB, x0,c0,p,T,U) so that it is very difficult to predict
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comparative behavior or to prove general results comparing the performance of

the optimal variable, optimal constant, and instantaneous marginal price

strategies. It is also clearly impractical to explore numerically very much

of the parameter space. Therefore, we have chosen 10 random examples whose

parameters are given in Table 1, and computed the discounted profits and the

ending cumulative market shares fcr each of the three different pricing

strategies; these results are shown in Table 2.

Table 2 indicates that use of the optimal variable pricing rule gives

the largest objective value, use of the optimal constant pricing rule is next,

and use of the instantaneous marginal pricing rule gives the smallest value.

But the order is reversed when the ending cumulative market shares for each rule

are-compared. In many cases the size of the ending cumulative market share is

extremely important for the future of a firm (e.g., to maintain leadership in

other markets), see Fig. 2-4.

* In Table 2, examples 2, 4, 6, and 7 all have g -. 1 and all indicate

that the optimal variable pricing rule gives larger profits than the other two

rules (provided we ignore the costs of changing prices). However, for examples

* 1, 3, 5, 8, 9, and 10 in Table 2, g is always greater than .1, and the three

pricing rules yield the same total profit and ending market share. The reason

for this difference is that g is proportional to the elasticity of demand, so.

that a small value of g means a small elasticity of demand, i.e., demand is

not sensitive to price. (For instance, if g - 0, then demand is completely

independent of the price.) Therefore to maximize profit a high price strategy

is best. on the other hand, if g is large then the elasticity of demand is

large too, so that demand is sensitive to price, and the marginal price is almost

equal to the marginal production cost, see (14). So we cannot adopt a significantly

higher or lower price than (14). So there is little significant difference among

the three pricing rules if g is large.
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We were unable to prove anything about the properties of the pricing

trajectory p(t) when the model employed the optimal variable pricing rule given

in (8). However, from our computational experience we know that the optimal

variable price, as well as the marginal price, decreases in time in ee.ch of

the 10 cases given in Table 1. We were also able to find a case (shown in

Fig. 1) in which the optimal variable price begins with a low initial price,

then increases in time, and finally decreases, a result which was similar but

less extreme than that previously by Robinson and Lakhani [16).

In general, the advertising trajectory u(t) when using either the

constant price or marginal price rule obeys Theorem 4, in which there are only

three quantitatively different kinds of optimal advertising policies as follows:

(A) No advertising at all over the whole time horizon; (B) Advertising during

an initial time, then no advertising when the market becomes saturated; (C) No

advertising, then advertising finally no advertising again. For examples, see

Fig. 3 and 4.

However, the advertising trajectory for the model which uses the optimal

variable price rule (8) is very complicated. As an example, we present graphically

in Figure 2 the computer generated solutions of Example 2 of Table 1 and explain

why they are so complicated. From (10), we know the switching function of u
* *

is D - (Y2 + y4x)(1-x)/g - ae . At the initial time, aegp  is greater than

(f2 + y4x)(l-x)/g so that no advertising is done in this period as shown in

Figure 2 and 5. When x reaches about 0.23, the optimal varia'3le-price dips

rapidly and aegp  becomes smaller than (y2 + y4x)(l-x)/g so that using the
am *

optimal control rule (6), we set u 10 and the cumulative market share x

increases rapidly as shown in Figures 2 and 5. Such an impact makes price p

go down sharply too such that ae P * is lower than (y2 + Y4 x)(l-x)/g again.

When x is close to T, x is approaching to 1, and %e9P  is always greater

, I I I I I II I i~l i' ,' " "' ," I
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than (Y2 + y4x)(l-x)
/g so that there is no advertising at the terminal time.

This example also illustrates Theorem I(e) since a rapid decrease of the optimal

variable price on two occasions causes pulses of advertising, see Figure 2 for

illustration.

Comparison of the solutions of the two examples in Figures 1 and 2 are

interesting. Note that in Figure 1 the inequalities y1 < 73 and Y2 < Y4 hold

while in Figure 2 the reverse inequalities hold. In other words in Figure 1

innovation is much less important than imitation while in Figure 2 the reverse

holds. In Figure 1 advertising is always 0, and price starts relatively high,

rises slightly, and drops off somewhat at the end, which means the monopolist is

passive and merely offers his product to the marketplace and waits for knowledge

about it to diffuse through imitation only. In Figure 2, the monopolist is very

active doing both "skimming pricing" and "pulse advertising." He begins with a

*t high price, skimming off profits from the early innovators; then later he makes

sudden drops in price followed by intense advertising campaigns to encourage new

buyers and increase sales volume. In between these sales campaigns, the imitation

effects continue to increase sales.

2.

S-'
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Samples y1  y2  y3  y4  ai $ x0  c 0  f U g T P

Ran~ge .1-.4 .5-.9 1-.4 .5-.9 .05-.10 0 .1-.5 10-30 .1-.5 5-10 .1-.5 20-150 .001-.005

1 .3 .6 .2 .9 .05 0 .5 14 .2 8 .3 23 .001

2 .4 .7 .1 .5 .09 0 .2 14 .1 10 .1 56 .005

3 .4 .9 .2 .8 .08 0 .4 30 .1 7 .2 42 .002

4 .2 .8 .4 .6 .10 0 .1 20 .4 6 .1 81 .001

5 .4 .8 .3 .7 .06 0 .2 21 .3 7 .4 119 .002

6 .1 .5 .3 .6 .07 0 .4 30 .2 8 .1 149 .002

7 .3 .6 .1 .5 .09 0 .3 24 .5 10 .1 109 .003

8 .1 .8 .4 .5 .05 0 .5 21 .2 9 .5 90 .002

9 .2 .6 .1 .8 .06 0 .4 21 .2 9 .2 77 .003

10 .3 .6 .1 .8 .05 0 .1 11 .2 7 .3 135 .003

Table 1. Randomly chosen parameters for 10 examples solved by
a discrete control monopoly model for all three
pricing rules.

Random J /J J /5 xo(T)/x (T) x (T)/x (T)
tSamples cO0 mO 0 m C m

1 1.00 1.00 1.00 1.00

2 0.62 0.55 0.94 1.00

3 1.00 1.00 1.00 1.00

4 0.53 0.49 1.00 1.00

5 1.00 1.00 1.00 1.00

*6 0.62 0.49 0.73 0.98

7 0.80 0.68 0.97 1.00
8..01.010010

8 1.00 1.00 1.00 1.00

90 1.00 1.00 1.00 1.00

Average 0.86 0.82 0.96 1.00

Standard0.0020.8.1

Deviation020020.801

Table 2. Ratio Values of the Objective Values J, and the Ending
Cumulative Market Shares x(T). Note that the subscripts
0, c, and m indicate the optim.1, constant and marginal
pricing rules, respectively.
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3. THE OLIGOPOLISTIC PRICE LEADER ADVERTISING MODELS

Here we shall extend the model from the one player case to the n player

price advertising non zero sum differential game. The procedure is similar to

that we employed previously in (20].

To define the oligopoly models we first state the following notation:

n - number of players

T - terminal time

Pi - discount rate for player i

xi(t) - cumulative market share for player i at time t; We

assume xi(t) > 0 and x (0) - Xio > 0.
n

x(t) - E x.(t) - cumulative total production at time t;
il1

We assume 0 < x(t) < 1.

W. - salvage value constant for player i.
1

f i

ci cio(X i0 /xi) = production cost for player i at time t;

c iO and fi are constants; We assume ci (0) - cio > 0, and

f > 0.

ii
ui(t) advertising rate for plyrIat tie t: We assume

ui(t) > 0.

pi(t) - price for player i at time t

A, a 2 u + 6, M quadratic advertising cost for player i;

We assume ai , ai and 6 are constants, and ai > 0.

Note that in this section we use a quadratic advertising cost instead of a

linear advertising cost as in Section 2. (We couldn't obtain closed form solutions

if we use a quadratic advertising cost in Section 2.) We also consider salvage

values for each player for his cumulative market shares at terminal time T.

4 .
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We consider in this section a market in which there is a single selling

price, decided by the largest competitor, say Firm 1, and assume first that the

demand for each player's product is linear in the price. The state equation for

player i then becomes

PUI - Pl xi )x^(9
-i" [(Yil+zui)(l-x) + (Yi3+Yi4u )(l-x)xi I K ()I x (29)

[(Yil~i~ui 0 14 1 1pU1 - P~l1 i i

where yik for k - 1,...,4 are nonnegative constants and p Ul' PL are the

upper and lower limits of p, respectively.

If, as in Section 2, the demand is an exponential function of price, then

the state equation for player i is

I i= [(yil +Yi2 ui )(l-x) + (Y 03+Yi4 u i)(l-x)x i e-9 ipl1 0 o (0

=*~+(.+.u)lxx~ ,xi(0) = xi0  (30)

where gi is a positive constant for i 1 1,...,n.

Subject to one of the two Equations (29) or (30), Firm i wants to maxi-

mize its profit. Mathematically this is equivalent to maximizing

J. -0iT  Te-P i t  fi1
" I W e x i(T) + f 0 {[ Dl_ C i0(X io/X i) IN 2-( aiu1+ t (1

The simultaneous maximization of all n functions Ji is impossible

in general. We shall apply the differential game maximum principle (4, 11]

find open loop Nash solutions as we did in [20]. Formal definitions of open loop

Nash solutions are given in [19]. We shall not give a complete formal definition

here. But simply note that an open loop Nash solution is a control trajectory

ui(t) for i - 1,2,...,n, such that ui(t) maximizes Ji given the assumption

that all other controls u (t) for J - I,...,i-1, i + l,...,n are held fixed.

We formulate the current-value Hamiltonian for Firm i as follows:
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fl i lco x i / i

Hi  -i + Xi.ij (32)

where the current-value adjoint variables Xij ,  ij 1,2,...,n satisfy the

following differential equations:

-ij a Pi x a , ' i,j - 1,2,...,n . (33)

Also, these adjoint variables must satisfy the transversality conditions:

W if J-i

x ij (T) = l (4)

i ( 0 otherwise i,j = 1,2,...,n (

By differentiating H i with respect to ui  and pIt and setting the

results to zero, we find the optimal controls as follows:

tU(p-Ci+Aii)(Yi 2+yi4x i)(l-x)PUll - PL B ]/(2a i)
liii ii Pt1 - PUL

1 ,2,...,n if state equations are (29)

u [ (PI-Ci+,Yi) (Yi2+i 4xi)(1-x)e -adl
=iI -- a]l(2 9) (35)

At 1 1,2 ,... ,n if s ta te e quat ion s are (30 )

0 if the above value is less than 0.

n
Max{PL1 "[(cI+P u)x - jl /(2E I )}

if state equations are (29)
n

P1 a, Max{0;c1 +(l/g1 ) E ij~ i A g / (g1*))11 (36)

if state equations are (30)

!,I
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It is impossible to find a closed form for the optimal advertising and

pricing policies for this oligopolistic quadratic advertising cost model. Thus,

we formulate the problem as discrete differential game problem and let the

computer solve it in a stepwise manner.

3.1 A Numerical Algorithm for Finding Open Loop Nash Solutions

After specifying the necessary conditions for optimality of the

differential game, there are n state equations (29) or (30) with n given

2
initial conditions and n transversality conditions (34) and the n

equations for the advertising control variables, and one other equation for

setting the pricing control variable.

Algorithm for the oligopolistic advertising and pricing models with

quadratic advertising cost.

Step 1. Read the values of parameters.

Step 2. Calculate the starting values of ui(k), xi(k), and pl(k) from

k - 0 to k - T step by step as follows:

u i(k) - as in (35) and setting i tc zero.

x (k+l) x(k) + x(k)
i i i

p1 (k+l) - as in (36) and setting XLi to zero.

Store the values of ui, xi and T1 -or all i a 1 ,.

and calculate Ji as shown in (31) then go to Step 3.

Step 3. Find the values of the adjoint variables backward in time by

using the values of ui, xj and PI' and the terminal conditions

on the adjoint variables, and substituting them in (33). Go to

Step 4.
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Step 4. Update the new values of ui, xi and p1  forward in time step by

step as follows:

ui(k) - as in (35)

xi(k+l) - xi(k) + *i(k)

pl(k+l) as in (36).

When k+l = T, calculate Ji as shown in (31) and go to Step 5.

Step 5. Check the difference between the new values of Ji (or ui or P1 )

and the previously found values. If there is no significant dif-

ference then the algorithm is terminated. Otherwise, update the

new Ji and go to Step 3.

Note that the above algorithm can solve other kinds of oligopolistic

advertising and pricing models with quadratic advertising cost. All that

is needed is to change the definitions of the various state and control

rules. In fact, it is a straightforward extension of our algorithm in [201. It

also can solve Deal's duopolistic advertising problem [5], and the bilinear

quadratic differential game of Deal, Sethi and Thompson [6]. Intuitively, our

numerical algorithm seems to be easier to use than Deal's algorithm, because that

method requires guessing all values for each competitor's controls for each discrete

instant of time during the planning horizon. We also were able to solve the problems

over much longer time periods than was done in [5, 6].

3.2 Numerical Results

We have applied the algorithm of the preceeding section to find open

loop Nash solutions for many different triopoly encounters. In each case,

the algorithm exhibited stability and fast convergence in about 10 iterations.
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To state a triopoly problem, there are 48 parameters to choose so

that it is difficult to predict behavior or to prove general results. How-

ever, if we suppose that all 3 firms have the same values of parameters

except one, then we observed the numerical results shown in Table 3.

A Larger Value of the Following Parameter in the Triopoly

Models Causes Larger Values of ui' Ji' and x (T):

Wi* yii' Y12s 14' fi

A Smaller value of the Following Parameter in the Triopoly

Models Causes Larger Values of ui,  Ji, and xi(T):

A i  c 0

Table 3. Effect of Larger Values of the Parameters on the
Controls, Objective Value and Ending Cumulative

* Market Shares in the Triopoly Models.

We have run many triopolistic price advertising cases by using one

or the other of the two different state equations defined in (29) and (30).

The computational results obtained from each of those two different state

equations are quite similar. It is sufficient to understand the outline of

the optimal controls in our problems by assuming the state equations are as

in (29). Here we present two examples whose state equations are given in (29),

and whose parameters are shown in Table 4. The values of the objective function

and the ending cumulative market shares for each competitor are shown in

Table 5. We also show in Figures 6 and 7, computer generated graphs for the

optimal controls ui and p 1 for the state trajectories xi and x.
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Example Player
No. i Y 11 Y12 Y13 Y14 011 B 1 W i xio C io f i T 0, Pl0 PIylI PL1

1 1 .004 .006 .004 .008 .01 .006 0 0 .20 22 .4 150 .005 29 35 20

2 t it if of .15 25 .3 i it to

3 it It i if .10 28 .2 " to of ,,

2 1 .004 .006 .004 .008 .01 .006 0 60 .20 22 .4 150 .005 29.5 35 20
S2 it IV is it ". 15 25 .3 It of it,

3 IV "t it "t It " .10 28 .2 " to Is " t-

JI

Table 4. Parameter Values of Two Examples of the One-Price Triopoly Problems.
Dittos indicate same values.

Example Objective Values Ji Ending Cumulative Market Shares xi(T)

No. 1 2 3 1 2 3

1 0.807 0.422 0.157 0.366 0.272 0.202

2 10.563 8.212 5.972 0.402 0.328 0.254

Table 5. Objective Values Ji' and ending Cumulative Market Shares xi(T), for

the two Triopoly examples in The Advertising and Pricing Model.

In Example 1, Firm 3 has the smallest beginning market share and learning

coefficient, and the largest initial production cost. This makes advertising not

worthwhile for Firm 3, as shown in Figure 6.

The ending market share is frequently important to the future of a firm (to

maintain market leadership). Of course, the way to increase the ending market

share for firm i is to make the value of Wi, the salvage value for player i,

larger. In Example 2, we assume that all 3 firms have higher salvage values

Wi I 60 than in Example 1. In this case, the advertising rate of each firm is

-

___ __ __ __ __ ___ __ __ __ __ __
9: V - l I ~ I - !' -
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higher and the price is lower than in Example 1. As shown in Figure 7, the price

goes down to the lower bound, 20, at time 100.

Note that we also compare the profits and the ending cumulative market

shares for the optimal variable and the instantaneous marginal pricing rules. The

results are similar to the monopoly case, i.e., if g is small enough then the

optimal variable pricing rule has a significantly larger profit than the others.

Otherwise, there is no significant difference among them. Here we present Example 3

whose parameters are shown in Table .6, and solve it by using the optimal variable

and the instantaneous marginal pricing rules. those computer plots are shown in

Figure 8 and 9, respectively. In this example, we also used state equation (30)

instead of (29).

Example 3 i 'il Yi2 13 Yi4 0i 0 6i Wi xi0  C1 0  fiT i

1 .3 .6 .1 .5 .09 0 0 0 .20 24 .4 .1 109 .003
2 - - - - - - - - .15 - .3 - - -
3 - - - - - - - .10 - .2 - - -

Objective Values Ji Ending Cumulative Market Shares x (T)

Player 1 2 3 1 2 3
Optimal price 2.93 2.80 2.67 0.38 0.32 0.26
Marginal price 1.43 1.32 1.21 0.39 0.33 0.27

Table 6. Parameters, Objective Values, and Ending Cumulative Market Shares
of Example 3. Dashes indicate same values.

. . .. .
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4. Conclusions

The problem of characterizing an pricing and advertising policy over time

is an important question in the field of marketing as well as in the areas of

business policy and competitive economics. These questions are particularly

important during the introductory period of a new product, when the effects of

the learning curve phenomenon and market saturation are most pronounced.

In this paper, we have established a generalized pricing and advertising

model for a new product, which contains as special cases a number of other authors'

pricing or advertising models [1, 3, 7, 15, 16, 20, 22]. Theoretical results for

the monopoly case were obtained. We also extended the monopoly model to an n

competitor differential game oligopoly model, and gave a numerical algorithm for

finding open loop Nash solutions.

Our oligopoly models can be extended in several different ways. For in-

stance, we may assume that the number of potential custom,-rs is dependent on both

advertising and price instead of being constant. Also, we could consider a model

in which each competitor sets his own price instead of single industry price being

decided by the dominant firm. Finally we could consider the problem of finding

closed loop Nash solutions instead of open loop Nash solutions to the model.

4
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